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240. Stationary Current- Voltage Curves for Cmplex  Electrode 
Processes. 

By A. C. RIDDIFORD. 

By considering stationary current-voltage curves, it is shown (u) that  
a general relation can be deduced for the sum of the reaction, charge transfer, 
and transport resistances which applies to a single electrode process of any 
degree of complexity, (b)  that the approximate concentration-dependence 
of the exchange current for any step in a sequence of simple consecutive 
reactions can be expressed by means of a single equation, and (c) that  in the 
absence of parallel processes this equation also applies to more complex 
electrode processes. 

THE stoicheiometric number for a given step in the mechanism of an electrode process, 
a concept introduced by Horiuti,l and the dependence of the exchange current for this 
step upon the concentrations of species entering into the overall stoicheiometric equation,2 
are two of the diagnostic criteria which have been developed for the elucidation of the 
mechanisms of electrode processes.* The general relationships upon which the use of 
these two criteria depends may be deduced in a number of ways, one of which involves the 
consideration of stationary current-voltage curves. 

These relationships have been deduced by a number of workers for various special sets 
of circumstances. A complete review of the many contributions in this field will not be 
attempted here; for our present purpose, and purely by way of illustration, it suffices to 
draw attention to some of the cases which have been considered. Vetter,2 for example, 
treated the case of processes for which there is a single electron-transfer step of unit 
stoicheiometric number, in which rate-control could be exerted both by the electrode 
process itself and by one or more of the transport processes. Subsequently,s he considered 
the case of a coupled sequence of different electron-transfer steps, again of unit stoicheio- 
metric number, but on this occasion he did not include non-electron transfer steps in the 
reaction scheme, nor did he consider the possible effect of the transport processes upon the 
overall rate. considered a general sequence of steps in which there is a single 
rate-determining step, the stoicheiometric number of which is not necessarily unity, but 
did not consider the possibility of transport control. This treatment was modified by 
Bockris to take transport control into account. 

Recently, Mauser lo has shown how many of the earlier relations can be generalised 
for a sequence of simple consecutive reactions, each of which may be either an electron- 
transfer step or an ordinary chemical reaction taking place at the electrode surface. In  
order to do this, he found it necessary to assume that the reaction mechanism is known, 
and he then established the conditions under which one or more of the unit steps can 
determine the overall rate of the electrode process without, however, considering the 
transport processes. 

It was felt that  his treatment could be made even more general and, therefore, it is 

Parsons 

* For reviews of these diagnostic criteria and references see, e.g., Bockris,* Vetter,4 Grahame,6 

1 Horiuti, J .  Res. I n s t .  Catalysis, Hokkaido, 1948, 1, 8; Horiuti and Ikusima, Proc. Imp. Acad. 

2 Vetter, 2. phys. Chem., 1950, 194, 284. 
3 Bockris, “ Modern Aspects of Electrochemistry,” Chap. IV, Butterworths, 1954; Ann. Rev. 

4 Vetter, 2. Elektrochem., 1955, 59, 596. 
5 Grahame, Ann. Rev. Phys. Chem., 1955, 6, 337. 
6 Gerischer, Angew. Chem., 1956, 68, 20. 
7 Delahay, Ann. Rev. Phys.  Chem., 1957, 8, 229. 

Vetter, 2. Naturforsch., 1952, 7a, 328. 
9 Parsons, Trans.  Favaday Soc., 1951, 47, 1332. 
10 Mauser, 2. Elektrochem., 1958, 62, 419. 
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the purpose of the present work to show (a) that a general relation for the initial slope of 
the current-voltage curve can be deduced which applies to a single electrode process of 
any degree of complexity, whatever the degree of transport control, (b)  that the multiplicity 
of equations obtained by Mauser for the concentration dependence of the exchange 
velocities can be replaced by a more general equation, and (c) that this equation is not 
only valid for systems of simple consecutive reactions of the type considered by Mauser, 
but also applies to more complex processes. To simplify the problem, it will be assumed 
that an excess of indifferent electrolyte is present.8 

Y 2 1 . 4  + 1224 + + yzyAY Z+ O,~A, + 02,A2 + + 02,A, + z2e- 

.... .... 
yslA1 + YAZAZ + + 7 s y 4  9- 0slA1 + os2A2 3- . + OsyAy + zse- J 

It should be noted that A,, A,, . . . , A,, together represent every different type of reactant, 
product, and intermediate species entering into the mechanism, where these three terms 
will be defined below. If there are n intermediate species in a given mechanism, it will be 
convenient to identify them with the species A,, A,, . . . , A,. 

By a unit step is meant a simple step to which the law of mass action is directly 
applicable, so that the stoicheiometric coefficients o and Y are also kinetic coefficients and 
hence are either small positive integers or zero; they can never be negative. For this 
reason, and in order to avoid confusion with the commonly employed stoicheiometric 
coefficients (denoted by v and introduced below), o and r will be termed the kinetic 
coefficients while v will simply be termed the stoicheiometric coefficient. In practice, the 
possible values for any kinetic coefficient so defined are 0, 1, and 2. 

For any unit step, say thej-th, zj can be zero (ordinary chemical step), 1 (in the case, for 
example, of an electron-transfer step in a redox process) or 2, 3, etc. (e.g., incorporation of 
a multivalent cation into the lattice of the ele~trode) .~ 

At first sight this notation may seem unnecessarily cumbersome, particularly since 
most of the kinetic coefficients appearing in the equations (1) are zero. I t  has been chosen 
for three reasons. First, these coefficients are, in fact, those which are established by 
experimental kinetic studies: secondly, by means of these kinetic coefficients we can 
define unambiguously the stoicheiometric number of any given step ; thirdly, this notation, 
or its equivalent, is necessary for the complete generality of the arguments advanced in 
the following sections. 

The overall stoicheiometric equation for the electrode process can now be formed, and 
the stoicheiometric number of a given unit step can be defined, in the following way. 
Multiplying each of the equations (1) by the corresponding stoicheiometric number, pi 
for thej-th unit step, and adding the s equations gives the overall stoicheiometric equation: 

the stoicheiometric numbers being so chosen that for any intermediate species, say A,#, 
we have: 

= 5 vjojn . . . . . . . . (3) 
j=l j = l  
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The usual stoicheiometric coefficients, vji for the species A i  in the j-th unit step, are 

obtained from expressions of the form : 

. . . . . . . . .  Oji -Tj i=Vj i  (4) 
and for the same species in the overall stoicheiometric equation 

. . . . . .  (5) PjOji - Pjirji = Pjvji = vi 
j=1  j = 1  j = 1  

From equation (5), if vi is negative then the species Ai is a reactant, but if positive it is a 
product. Equation (3) is based upon the usual definition of an intermediate species, 
vi = O.* Hence the overall stoicheiometric equation may also be written in the more 
usual form: 

5 v i ~ i  + xe- = o . . . . . . . .  (6) 
i = l  

where . . . . . . . .  

and, because of the assumption of the presence of an excess of indifferent electrolyte, the 
Nernst equation for the equilibrium electrode potential, #o, may be expressed in the 
approximate form : 

In this equation, 4' is the standard (concentration) electrode potential, and Ci denotes the 
concentration of the i-th species a t  electrochemical equilibrium. 

The net velocity of the j-th unit step when the electrode is sustaining a current i may 
be written: -/- 

vj = k,, a exp (ajZjB'+/RT) fJ cji - kj, exp (-PjzjP#/RT) fi Ctji . . (9) 
i=l i = l  

where + is the potential of the working electrode, ci denotes the stationary concentration 
of Ai at the electrode surface, and aj and pj are the transfer coefficients. It will be 
assumed that aj and pj  sum to unity, as is usually, but not necessarily,ll the case, and that 
their values do not vary with 4. When zj = 0 (chemical reaction), the anodic and 
cathodic rate constants for this unit step, kj,u and kj,,, respectively, are the ordinary 
chemical rate constants. 

From equation (9), the exchange velocity of the j-th unit step is given by: 

* If the terms " reactant," " product,'' and " intermediate " are defined in this way, the use of the 
kinetic coefficients yj8 and ori obviates the need for specifying whether a given species Ai is a " reduced " 
or " oxidised " species in the j-th unit step, etc. The stoicheiometric coefficients v,i and v i  should not 
be confused with those used by Mauser.lo 

t See, e.g., Vetter.2, The net velocity and current will be taken as positive for net anodic processes 
and negative for net cathodic processes. 

11 Audubert, J .  Phys. Radium, 1942, 3, 81; Discuss. Faraday SOC., 1947, 1, 72; Bonnemay, Compt. 
rend., 1946, 222, 793, 1222; 225, 76; J .  Chim. phys., 1947, 44, 187; Riddiford, " Surface Phenomena in 
Chemistry and Biology," Pergamon, London, 1958, p. 224. 
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and is positive. The condition for a stationary state can be expressed in the form: * 

where v ,  the overall velocity, refers to the process symbolised by equations (2) and (6). 
Then 

. . . . . . . . .  v = i p  (12) 

and, like the current i, is taken as positive for net anodic processes but as negative for net 
cathodic processes. 

2. THE INITIAL SLOPE OF THE CURRENT-VOLTAGE CURVE, 
AND THE EXCHANGE CURRENTS 

From equations (9)-(12), the ratio of the net velocity of the j-th unit step to the 
exchsnge velocity of that step is given by: 

. . . . . . . .  where ? = $ - + a  (14) 

is the overpotential; q is positive for net anodic processes. 
with respect to $ gives: 

Differentiating equation (13) 

At electrochemical equilibrium, i and y1 are zero, and ci = Ci, etc., so that equation (15) 
becomes : 

From equations (5) and (7), multiplying each of the s equations (16) by the corresponding 
stoicheiometric number and then adding, we obtain : 

For the transport of the i-th reactant or product species to or from the electrode surface 
- 

. . . . . . .  Ci/Ci = 1 - i/ili,,i (18) 

where ilim,i  is the transport limiting current for the given species,12 and is reckoned positive 
for reactant species. From equation (18), 

- * Mauser lo expresses the condition, incorrectly, as alpr = v2p2 = . . . .  - vspL, = v. 

I 2  Agar and Rowden, Proc. Roy.  SOC., 1938, A ,  169, 206. 
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Introducing the equations (19) into (17) gives finally: 
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and it should be noted that this equation is valid whatever the degree of complexity of 
the electrode process; indeed, if one takes into account current views concerning the 
influence of the structure of the electrical double layer upon the rates of processes taking 
place at  an electrode surface in the absence of specific adsorption,13 it is a simple matter 
to show that the same equation will hold whether an excess of supporting electrolyte is 
present or not.* 

On the right-hand side of equation (20), the term ( R T / Z P ) & ~ / Z F V ~ ~  taken over all 
unit steps for which xi # 0 is a measure of the charge transfer resistance; similarly, 
( R T / Z P ) ~ ~ ~ ~ / Z F V ~ ~  ( z k  = 0) and - (RT/ZF)CYi/ilim. i, respectively, are measures of the 
reaction resistance and transport resistance.2 
is negative for all Ai. 

In other 
cases, it is often possible to measure at  least one of the limiting currents, when the remainder 
can be calculated. In such cases, however, it is important to show that the limiting 
current so found is, in fact, due to transport control and not the result of a slow stage in 
the reaction mechanism.? This is readily done by applying the usual diagnostic criteria 
for transport control,15 or by studying a process known to be subject to transport control 
in a system having the same transport characteristics as the one under in~estigati0n.l~~ l 6  

Thus, the sum of the charge transfer and reaction resistances may be determined from 
the initial slope of the current-voltage curve, provided that this sum is not very small in 
comparison with the transport resistance.$ 

Finally, it is instructive to consider the relation between the exchange velocity of a 
unit step and the corresponding exchange current.$ Parsons9 studied the case when 
there is a single rate-determining step, say the j-th, and obtained the following equation 
(expressed in the present notation) : 

It will be observed that the ratio vi/ilirn. 

The limiting transport currents are accurately calculable in certain ~ases .1~  

in which ijo is the exchange current for the j-th unit step. 
equation (20) reduces to: 

For this particular case, 

= 0 = RTpj2/z2Pvjo 

which is identical with Parsons’s expression provided that ij, is defined as follows: 

i j o  = ~ F ~ j o / p j  . . . 
An alternative definition 

ijo = Z j P V J O  

(21) . . . . .  

has been used by some workers, possibly because they do not favour the concept of an 
* Cases in which the degree of surface coverage is potential dependent will be considered elsewhere. 
t See, e.g., Fig. 1 in ref. 10. 
$ If it  is, one must resort to  other methods. 
9 The common practice of referring to the exchange current of an electmde process is misleading. 
13 Frumkin, 2. EZektrochem., 1955, 69, 807; Breiter, Kleinerman, and Delahay, J .  Amer. Chem. Soc., 

1958, 80, 5111. 
14 Levich, Acta Physicochim. U.R.S.S., 1942, 17, 257; Zhur. fiz. Khim. ,  1944, 18, 335; Discuss. 

Faraday SOC., 1947, 1, 37; Koutyetskii and Levich, Doklady Akad.  Nauk  S.S.S.R., 1957, 117, 441; 
Gregory and Riddiford, J., 1956, 3756. 

15 Bircumshaw and Riddiford, Quart. Rev., 1952, 6, 157. 
16 Ibl, Chimia, 1955, 9, 135. 

See, e.g., Gerischer 6 and Delahay.’ 
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exchange current for unit steps which do not involve electron transfer (zj = 0). This 
view is more logical, but less convenient, than that implied by equation (21), and the 
latter will be retained as the general definition in the following sections.* Equation (20) 
may then be written in the form: 

3. DEPENDENCE OF EXCHANGE CURRENTS UPON CONCENTRATION 

From equations (10) and (2l), taking logarithms and introducing equation (S), we have 

If the concentrations of all reactant and product species are kept constant except one, 
say C,, then from equation (22), 

[where the subscript (m) indicates that the concentrations of all reactant and product 
species except the m-th are kept constant. The concentrations of the intermediates will, 
of course, vary]. We suppose that there are n intermediate species, A,, A,, . . . , A, 
(vi = 0), and that A,+1, . . . , A,, are the reactant and product species (vi # 0) ,  when 

( a  In Ci/a  In Cm)(ml = 1, 

= 0 ,  

for i = m, 

f o r i g m ,  1 , 2 , .  . . ,n .  

Then equation (23) may be written: 
n 

i = l  
( a  In In C,),,> = yjjllL + ~ c ~ z ~ v ~ / z  + 2 yji(a In Ci/a In C,),, 

and it is by the application of modifications of this equation to experimental data for the 
variation of a given exchange current with the concentration of a reactant or product 
species (or with the equilibrium potential of the electrode) that the mechanisms of a 
number of electrode processes have been diagno~ed.~ 

The modifications r m l t  from the elimination of the terms involving the concentrations 
of the intermediate species. Mauser,lo for example, considered the case of a mechanism 
comprising n simple consecutive reactions in which any Ai of the n - 1 intermediates 
A,, A,, . . . , A, - 1, appears only on the right-hand side of the i-th step and on the left-hand 

* Clearly, the two definitions are different even for unit steps involving electron transfer since, in 
general, zlpj + zj (see equation 7). 
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side of the (i + 1)-th step. It follows that there is not more than one intermediate on each 
side of a given unit step. For this case, equation (24) becomes: 

(a In i j o / a  In Cm)cmJ = r j m  + a j z j v m / z  + rjcj- I)( a In Cj - ,/a In Cm),) 

- - ojm - pjZjvm/Z + ~jj (a  In Cj/a In Cm)cm) . (25) 

(a In Cj-i/a In Cm)(m,  may be found from the j - 1 equations of form (25) for the steps 
which precede the j-th ; multiplying each such equation by the corresponding stoicheio- 
metric number and adding gives: 

Similarly, from the steps j + 1 to n 

. .  

. .  

Introducing these equations into equation (25), we find: 

which is the general equation from which equations (51) to (58) in Mauser's article are 
readily obtainable, Le., the use of the stoicheiometric coefficients o and r obviates the 
necessity for a multiplicity of equations. There is no need to specify that A, is a reactant 
species, for example, nor is there any need to specify where it enters into the mechanism. 
The essential difference is that, whereas Mauser's considerations are based upon a given 
mechanism, the present argument can be applied, with obvious reservations, to any 
mechanism for a system comprising simple consecutive reactions, Le., it can be used for 
diagnostic purposes. 

For example, in the 
case of a mechanism in which there is but one electron-transfer step in a sequence of simple 
consecutive reactions, say the j-th, Vetter l7 derived the following equation : 

Other equations have been developed for diagnostic purposes. 

for the case when all reactant 
constant concentration, and 

and product species except the m-th are maintained at 

for the case when all reactant and product species are maintained at constant concen- 
tration except the m-th and m-th species, one of which is a reactant and the other a product. 
The concentrations of these two species are varied in such a manner that the equilibrium 

Vetter, 2. Elektrochem., 1951, 55, 123. 
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potential remains unchanged. 
mechanism comprising a single electron-transfer step Vetter’s z terms are given by 

From equation (28), it is readily seen that for the case of 

and . (32) 

It is of particular interest to note that Vetter’s equation (30) is also valid for the case 
of a sequence of simple consecutive reactions in which there are two or more electron- 
transfer steps, a fact that could be of much assistance as a further diagnostic criterion. 

4. TYPES OF MECHANISM FOR ELECTRODE PROCESSES 

More than one process may take place at  the surface of an electrode, for example, the 
simultaneous discharge of a metal cation species and of hydrogen ion at the dropping- 
mercury electrode at  high cathodic potentials. Even if the changes occurring at the 
electrode surface are uniquely represented by one stoicheiometric equation, however, it is 
still conceivable that two or more parallel processes are occurring a t  the surface, where by 
the term parallel is understood the case of reactions using the same reactants and forming 
the same products but proceeding by distinct routes involving completely different inter- 
mediate species. 

Excluding the case of parallel processes, it is instructive to consider the possible ways 
in which the unit steps of the reaction route may be coupled together by means of the 
intermediate species or, and this amounts to the same thing, to consider the possible types 
of unit step. For this purpose, one need only take into account the number of different 
types of intermediate species entering into a given unit step; the reactant and product 
species are of no importance so far as the question of coupling is concerned. 

The simplest form of coupling is that which Mauser lo has termed the case of simple 
consecutive reactions, discussed in Section 3 ; it might be described more conveniently 
as 1 to 1 coupling. The sequence begins with a unit step in which there are no intermediate 
species on the left-hand side, and only one intermediate species on the right-hand side. 
This can be described as a 0 : 1 unit step. The sequence finishes with a unit step in which 
one intermediate species appears on the left-hand side, but none on the other side, i.e. 
a 1 : 0 step. 

Because of the usual kinetic restrictions on the molecularity of a unit step, the possible 
types of alternative steps are very limited. It will be assumed that the molecularity of 
any unit step cannot exceed two, whichever direction is considered. On this assumption, 
the starting step or steps are limited to two types, 0 : 1 and 0 : 2; similarly, the final step 
or steps are restricted to the types 1 : 0 and 2 : 0. For the remaining unit steps of the 
mechanism there are four possibilities, the 1 : 1 type discussed above, 1 : 2, 2 : 1, and 2 : 2. 

Any intermediate participating in the reaction mechanism must satisfy the general 
requirement shown in equation (3). In  consequence, it will be seen that an equation of 
the same forrn as (28) is applicable to any of the eight types of unit step listed above, with 
but one exception (see below). All that is necessary is that equation (28) should be 
re-written in the form: 

The remaining unit steps of the sequence can be described as 1 : 1 steps. 
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where the summation q is taken over all the unit steps which give rise to the one or two 
intermediate species on the left-hand side of the j-th unit step, and p is taken over all the 
unit steps generated by the intermediate species formed in the j-th unit step. Thus, if 
there is one unit step which uniquely determines the rate of the electrode process, by 
itself the fact that the logarithm of the magnitude of the exchange current varies linearly 
with the logarithm of the magnitude of the concentration of a reactant or product species 
A, can give no indication as to the complexity of the mechanism. On the other hand, 
the very generality of equation (33) means that it can be applied to a single electrode 
process of any degree of complexity. 

This equation cannot be applied, however, to a 1 : 1 step in certain improbable, but 
not inconceivable, circumstances. This is illustrated by the following scheme in which 
a set of unit steps (from which all reactants and products have been omitted) form a 
closed loop: 

A* * A5 + A58 + zse- 

A, + z6e- A,. A,! + Z6je- 

As =+ A, + z7e- A,. += A,. -t z,)e- 

A, + A,) + A, + x,e- 

The loop shown is formed from four 1 : 1 steps, preceded by a 1 : 2 step and followed by a 2 : 1 
step. Irrespective of the number of 1 : 1 steps in either arm of the loop, which could also be 
preceded or followed by a 2 : 2 step, it will be seen that equation (33) cannot be applied to 
any 1 : 1 step in such a loop. On the other hand, no single 1 : 1 unit step in a closed loop 
can be uniquely rate-determining, although two 1 : 1 steps, one in each arm of the loop, 
could jointly determine the rate. 

In conclusion, it will also readily be seen that provided one generalises Mauser's lo anodic 
and cathodic slopes * in the form: 

where the summations p and q have the same significance as in equation (33), all his 
conclusions concerning 1 to 1 coupling are applicable to single-electrode processes of 
complex form. In particular, two 1 : 1 steps, one in each arm of a closed loop, can only 
jointly determine the overall rate if they have exactly the same Tafel slope. 

I thank one referee for his helpful criticisms of the first draft of this communication. 
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* Mauser's anodic slope, A,", is related to b,, the anodic Tafel slope corresponding to rate control by 
the j-th unit step, as follows: 

Similarly, for the cathodic case, 
b, . Aj" = 2*303RT/P. 

- b, . Ajc = 2*303RT/F. 


